Challenge

Fukushima nuclear power plant survived an earthquake, but was devastated by the following tsunami that breached its flood walls. The flood water damaged the cooling infrastructure and led to a melting of the nuclear fuel in the reactor core. The fuel rods melted and flowed out of the core are and were deposited elsewhere in the primary containment vessel. We’ve aimed to develop hardened sensors that can operate in this harsh environment and measure gamma doses to ‘find’ where the fuel has been deposited, and inform the next stages of the clean up and decommissioning processes.

Approach

Following our earlier work in measuring dose rates and calculating activity models in other parts of the site, we were contracted to develop a new sensor system tailored to the particularly harsh radiation environment expected in the primary containment vessel. This ground breaking system built on the N-Visage® foundation was designed and developed using components that were tested against the high does rates expected. The system was also subject to constraints relating to its deployment by remote handling equipment through an existing narrow penetration into the primary containment vessel. The system combined data from gamma cameras, sonar, video and novel structured light elements, that is combined through advanced algorithms (developed in MATLAB) to produce a source activity model of the environment. The sensor system is operated through a web-based GUI.


Solution

We plan to deploy the sensor later this year in Japan. The first step will be integration of new deployment technologies and operator training prior to being installed at Fukushima nuclear power plant. We’ve performed active testing on the system at UK radiation facilities including Harwell in Oxfordshire. It is capable of being deployed through narrow apertures at the end of a 22m boom arm.

The system is now being further developed for future programmes at Fukushima, including plans to upgrade the graphical user interface to support multi-languages. Elements of the developed technologies are also being considered by nuclear power plant operators in the UK for measurements in high dose rate equipment.

Next

Spot® & Boston Dynamics

Custom sensor integrations for Boston Dynamics Spot®
matt

Matt Mellor, Managing Director

Matt Mellor started his career as an academic working in research and development at Oxford University where his specialist field was in computer vision and robotics with medical application. But in writing papers, which he says were mainly “read by other academics so they could cite it in their research”, Matt could see there was a vital component missing.

“To turn that research into a product I learned that you have got to make that happen yourself to ensure others recognise the value of it,” said Matt. “That started me on an odyssey to learn about the full process of technological development. That means not just learning about technology, but also about business, people, finance – all the parts you need to make something happen which is going to make a positive change in the world.”

With that in mind, Matt moved to Cumbria and joined REACT Engineering. “REACT put the emphasis on entrepreneurship and I joined the company to apply what I had learned in nuclear medicine to nuclear engineering.” In particular, Matt was able to apply his knowledge in medical imaging to provide smart, technological solutions to the nuclear clean-up industry.

In 2007, Matt was the technical lead in setting up REACT’s own spin-out – aerial surveying company, Hi-Def, which gave him valuable experience of the process involved in setting up a spin-out business. Hi-Def went on to be a sustainable, successful business in its own right and in 2016 became part of the BioConsult SH group. Meanwhile, Matt set up Createc in June 2010, and as CEO has led the company to achieve impressive growth ever since.

Createc started out with just three members of staff – Matt, Alan Shippen and Pete Rodgers. The company’s mission was to create a profitable business out of computer vision and robotics research and development, demonstrating the value such a service adds to industry. Building on technological expertise in the nuclear sector learned from REACT Engineering, Createc developed its N-Visage® technology which went on to be used in the clean-up following the Fukushima Daiichi accident in Japan.

Closer to home, Createc used its intellectual property in computer vision to build a business opportunity and set up spin-out company, Sportlight. Earlier this year, it launched a second spin-out from its robotics expertise creating Createc Robotics.

Looking ahead, as society and industry move out of a Covid-19 lockdown, Matt sees robotics playing an ever more important role – but warns those who think it will be an overnight change, to be more patient. “Society has always overestimated what technological development will take place over a two to five-year period. But it has always underestimated what development will take place over 20 years,” said Matt.

“Technological development is an accumulation of small goals which build on top of each other. It creeps forward so that over a 20-year period people then look back and are amazed at how much the world has changed. In 20 years’ time we are going to have a lot more robots, and we will have improved collaboration between human and machine. In some areas that might involve helping to remove people from having to carry out tasks in hazardous environments. In other areas it might be giving people more senses and more capabilities.”

Createc applies its thinking and technologies to any problem to find a solution, and takes a flexible approach when doing so. This means that it can adapt for a range of industries and a range of situations. “We look at the way we can do something, not where we can do it,” said Matt. It’s an approach which has seen its solutions applied in a range of industries and settings, including nuclear and defence, rail and security. Among future growth areas for Createc are heavy engineering, major industrial and general construction.

Createc has received two Queen’s Awards in recent years, one for International Trade and one for Innovation, recognising the company’s success in developing technology. The company is also proud to have won awards for innovation from The Institution for Engineering and Technology (IET), The International Atomic Energy Agency (IAEA) and Nuclear Decommissioning Authority (NDA).

Createc’s strategy as it moves beyond its 10-year anniversary is to concentrate on research and development to launch a series of further spin-out companies. Two things Matt is keen to influence in the wider economy to help support the company’s ambitions are funding and leadership. “We need to make sure that the UK is more start-up friendly. And we need more entrepreneurs who want to come and run these businesses,” said Matt. “To me an entrepreneur takes complete ownership and picks their way forward and proceeds confidently in the face of doubt.”

“We have had a sustained growth rate of 40 per cent, and we are focused on continuing to grow at this rate. In the first ten years we have grown from a company with three people turning over £180,000 to 30 people turning over £3.5m. To sustain that level of growth by the end of the next ten years we would have 300 people turning over more than £60m.”

Matt has a clear vision of how the company will keep driving forward, and his motivation and appetite to lead the company to further success is clear. “My motivation comes from bringing something completely new to life which results in the world being a better place,” he said. “Seeing all the pieces come together and creating this thing which creates an economic benefit and also has a positive impact on the world is really satisfying.”