Project Title

Project one-liner that provides a punchy summary.

Overview

Mobile robotics is becoming the deployment tool of choice for nuclear characterisation applications. However, there is no one-size-fits all robotic platform, and robots are frequently required to carry application specific tools in addition to their radiation measurement apparatus. Today, handling these requirements means that each new robot deployment requires a dedicated robotics development project; this is a costly and time-consuming process and has become a significant obstacle to adopting mobile robots as a standard tool.

Approach

Together with Oxford University Robotics Institute we have developed an intelligent sensor module that can add accurate real-time 3D radiation imaging and autonomous exploration capability to any robot with a ROS interface. The system can either supply its own 3D mapping capability, or can incorporate the Rooster 3D mapping system from Oxford, which has world leading accuracy and robustness.

Solution

The system comprises an embedded computer running N-Visage® real-time 3D activity mapping software alongside autonomous exploration software from ORI; the system interfaces between an autonomous robot and radiation sensor enabling state-of-the-art characterisation capabilities to be integrated in a matter of hours, without any specialist knowledge of radiation measurement.

Optionally, the system can also integrate ORI’s Rooster multi-modality SLAM navigation system. Rooster combines data from multi-beam lidar, stereo camera and IMU to provide the most robust and accurate indoor localisation system available. Alternatively, for robots that already have SLAM capability, the Smart Radiation system can integrate with any third part SLAM that can transmit its map over a ROS interface.

The output of the system is a fully quantified 3D activity map for a single gamma-emitting isotope of choice, complete with uncertainty estimates. The raw data logs can be processed off-line using the N-Visage® Fusion desktop analysis software to map other isotope, classify waste, or predict the results of shielding or decontamination operations.

Combining the worlds widest used 3D radiation mapping code with new support for Compton cameras and the latest autonomy and navigation capabilities from ORI, the Smart Radiation system provides a quick and easy way to integrate state-of-the-art gamma mapping into any robot.

Conclusion

Mobile robotics is becoming the deployment tool of choice for nuclear characterisation applications. However, there is no one-size-fits all robotic platform, and robots are frequently required to carry application specific tools in addition to their radiation measurement apparatus. Today, handling these requirements means that each new robot deployment requires a dedicated robotics development project; this is a costly and time-consuming process and has become a significant obstacle to adopting mobile robots as a standard tool.